Abstract

The Rauðafell composite complex is part of the Neogene Breiðdalur volcano, eastern Iceland and is composed of a composite feeder dyke, a vent structure and a composite flow. The two end-members of the composite complex are rhyolite and basalt, and both are rich in plagioclase macrocrysts: bytownite in basalt and oligoclase in rhyolite. The rhyolite also includes ferroaugite macrocrysts. The mixed rocks are separated in three textural groups related to mixing proportions. When the basaltic end-member is dominant, a hybrid texture with a homogeneous matrix is observed and the only evidence of mixing is the presence of antecrysts of both end-members. When the basaltic end-member represents c. 65 to 30 % of the mixture, we observe emulsion textures composed of finely co-mingled basalt and rhyolite. The difference between these two textural expressions of mixing is due to effects of diffusion. The third texture shows mafic enclaves suspended in a rhyolitic matrix. In these rocks, the proportion of the basaltic end-member is inferior to 30 %, implying that the basalt froze solid in contact with the rhyolite. Zoning of plagioclase shows that the mixing processes are driven initially by highly efficient micro-mingling; the emulsification is possibly a result of compositional gradient stresses (Korteweg stress) between miscible basalt and rhyolite. This is followed by chemical diffusion (hybridisation) and tend to protect antecrysts from reaction with the primitive magmas. When antecrysts originated in the evolved magma, they undergo dissolution due to thermal disequilibrium during mingling and chemical disequilibrium during hybridisation. We argue that such mixing processes are important in producing intermediate rocks in Iceland and elsewhere that shows only the chemical attributes of an origin by mixing. The preservation of emulsion textures is rare and highly dependent on cooling history.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.