Abstract

The 2004-6 eruption of Mount St. Helens produced dacite that contains 40-50 volume percent phenocrysts of plagioclase, amphibole, low-Ca pyroxene, magnetite, and ilmenite in a groundmass that is nearly totally crystallized. Phenocrysts of amphibole and pyroxene range from 3 to 5 mm long and are cyclically zoned, with one to three alternations of Fe- and Al-rich to Mg- and Si-rich layers showing little indication of phenocryst dissolution between zones. Similar-size plagioclase phenocrysts also contain several cyclic zones ranging between ~An68 and An45-35. Textural evidence indicates that amphibole, pyroxene, and ilmenite began to crystallize before the most An-rich plagioclase. Magnetite and ilmenite phenocrysts are small (less than 100 μm), vary somewhat in composition from grain to grain, and are sporadically zoned. Magnetite-ilmenite pairs yield temperatures of equilibration ranging from 820°C to 890°C and f O2 values of NNO +1 log unit. Magnetite compositions suggest that the 2004-6 magma was formed by mingling of magmas less than 5-8 weeks before eruption and that the magma last equilibrated within this temperature range. The amphibole phenocryst zoning involves approximately equal amounts of a pressure-sensitive Al-Tschermak molecular substitution and a temperature-sensitive edenite substitution in one cycle of growth. Hydrothermal experiments done on the natural dacite show that crystallization of the Fe- and Al-rich amphibole end member requires pressures of 200-300 MPa at temperatures of 900°C, conditions approaching the upper temperature limit of amphibole stability. The dacitic magma crystallizes the An68 plagioclase when the pressure drops to 200 MPa at 900°C. The magma must cool at this depth to produce a complete An68-An40 plagioclase zone and a Mg-rich layer on the amphiboles before the magma is cycled back to a high pressure, when a new layer of Fe-rich amphibole is acquired. The amphibole crystallizing in the dacite experiments at less than 200 MPa is lower in aluminum than any compositions in the natural cyclically zoned phenocrysts. The outer rim on some 2004-6 amphibole phenocrysts appears to have formed in the 100-200 MPa range, as do some phenocrysts in the May 1980 dacite pumice. Plagioclase rims of An35 in the 2004-6 magmas indicate that phenocryst growth continued until the pressure decreased to 130 MPa and that ascent was slow until this depth. Magma then entered the conduit for a relatively rapid ascent to the surface as indicated by the very thin (less than 5 μm) decompression-induced rims on the amphibole phenocrysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.