Abstract
The lithosphere–asthenosphere boundary (LAB) beneath the continents is a key interface in plate tectonics, yet its nature remains elusive. A partial melt layer has been advocated to explain its geophysical characteristics. However, the main counter-argument is that such a layer cannot be stable as melts should rise through the lithosphere. Density measurements of volatile-containing alkali basalts taken as a proxy for LAB melts show that they are neutrally buoyant at the pressure (P)–temperature (T) conditions of the LAB under continents. Complementary X-ray diffraction and Raman data provide structural insights on melt compaction mechanisms. Basalts generated below the lithosphere may thus be gravitationally trapped and accumulate over time. Their presence provides answers to key questions on continental lithosphere geodynamics, and in particular on cratonic keels stability. This buoyancy trap would cease to exist at higher mantle T such as those relevant of the Archean, and as such, could be linked to the onset of plate tectonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.