Abstract
We investigate the physics of photonic band structures of the moir\'e patterns that emerged when overlapping two uni-dimensional (1D) photonic crystal slabs with mismatched periods. The band structure of our system is a result of the interplay between intra-layer and inter-layer coupling mechanisms, which can be fine-tuned via the distance separating the two layers. We derive an effective Hamiltonian that captures the essential physics of the system and reproduces all numerical simulations of electromagnetic solutions with high accuracy. Most interestingly, \textit{magic distances} corresponding to the emergence of photonic flatbands within the whole Brillouin zone of the moir\'e superlattice are observed. We demonstrate that these flatband modes are tightly localized within a moir\'e period. Moreover, we suggest a single-band tight-binding model that describes the moir\'e minibands, of which the tunnelling rate can be continuously tuned via the inter-layer strength. Our results show that the band structure of bilayer photonic moir\'e can be engineered in the same fashion as the electronic/excitonic counterparts. It would pave the way to study many-body physics at photonic moir\'e flatbands and novel optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.