Abstract
In this paper, we report an efficient process to grow well-aligned carbon nanotube (CNT) arrays with a good area distribution density (about 5.6 ×107 CNT/mm2). Vertically aligned carbon nanotubes (VA-CNTs) have been produced by controlling flow rate, temperature and catalyst nanoparticles using a floating catalyst chemical vapor deposition (FC-CVD) technique. They were synthesized on quartz substrates at 800 °C from toluene as a carbon source. VA-CNT samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and their surface area and pore size were determined by nitrogen adsorption analysis. The synthesized CNTs have a length of 500 µm and diameters ranging from 120±40 nm. The CNT filaments form a strength structure and exhibit a good vertical alignment. The remarkable properties of CNTs make them attractive for separation applications, especially for water and wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.