Abstract

The superfluid density is calculated theoretically for incompressible vortex lattices in two dimensions that have isolated dislocations quenched in by a random arrangement of pinned vortices. The latter are assumed to be sparse and to be fixed to material defects. It is shown that the pinned vortices act to confine a single dislocation of the vortex lattice along its glide plane. Plastic creep of the two-dimensional vortex lattice is thereby impeded, and macroscopic phase coherence results at low temperature in the limit of a dilute concentration of quenched-in dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.