Abstract

Ionic motion significantly contributes to conductivity in devices such as memory, switches, and rechargeable batteries. In our work, we experimentally demonstrate that intense terahertz electric-field transients can be used to manipulate ions in a superionic conductor, namely Na^{+} β-alumina. The cations trapped in the local potential minima are accelerated using single-cycle terahertz pulses, thereby inducing a macroscopic current flow on a subpicosecond timescale. Our results clearly show that single-cycle terahertz pulses can be used to significantly modulate the nature of superionic conductors and could possibly serve as a basic tool for application in future electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.