Abstract
In case of fire or some other emergency situations, people will move fast to evacuate from the dangerous zone. For safe and efficient evacuation, it is essential to understand pedestrian movement in fast pedestrian flow. Although there are a lot of research about the fast pedestrian flow, most of them focus on pedestrian dynamics at bottleneck or evacuation from a room. The research about the fast pedestrian flow in corridor is few, and the relation of velocity and local space is not clear yet. Here a series of single-file experiments were conducted to investigate pedestrian dynamics of the normal and fast walking pedestrian flows in a corridor. It is found that fast pedestrians can still move smoothly at 1.82 Ped/m where apparent stop-and-go behavior appears in the normal walking pedestrian flow. Both the headway-velocity relations of the normal and fast walking pedestrian flows have two regimes. However, in the fast walking pedestrian flow, pedestrians have a wider free regime and they can move with a higher velocity even in a small local space due to the higher motivation. The minimal distance and adaptation time of our experiment are also compared with that of experiments on the level ground and on the stair furtherly. According to fundamental diagram, we found that the fast walking pedestrian flow moves more quickly even at very high density and the maximum flow increases 64.47 % than that of the normal one. The fast pedestrian flow will not be influenced by the shape of the corridor by comparing the fundamental diagram, while pedestrians tend to walk close to the inner edge of the corridor especially when pedestrian walk fast at circle corridor. This study can be helpful for the design and management of the facilities. It can also be used for the calibration of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.