Abstract

Some noteworthy and historical perspectives and an overview of macroscale and microscale heat transport behavior in materials and structures are presented. The topic of heat waves is also discussed. The significance of constitutive models for both macroscale and microscale heat conduction are described in conjunction with generalizations drawn concerning the physical relevance and the role of relaxation and retardation times emanating from the Jeffreys type heat flux constitutive model, with consequences to the Cattaneo heat flux model and subsequently to the Fourier heat flux model. Both macroscopic model formulations for applications to macroscopic heat conduction problems and two-step models for use in specialized applications to account for microscale heat transport mechanisms are overviewed with emphasis on the proposition of a Generalized Two-Step relaxation / retardation time-based heating model. So as to bring forth a variety of issues in a single forum, illustrative numerical applications are overviewed including some relevance to thermo-mechanical interactions

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.