Abstract

With few exceptions, macros have traditionally been viewed as operations on syntax trees or even on plain strings. This view makes macros seem ad hoc, and is at odds with two desirable features of contemporary typed functional languages: static typing and static scoping. At a deeper level, there is a need for a simple, usable semantics for macros. This paper argues that these problems can be addressed by formally viewing macros as multi-stage computations. This view eliminates the need for freshness conditions and tests on variable names, and provides a compositional interpretation that can serve as a basis for designing a sound type system for languages supporting macros, or even for compilation. To illustrate our approach, we develop and present MacroML, an extension of ML that supports inlining, recursive macros, and the definition of new binding constructs. The latter is subtle, and is the most novel addition in a statically typed setting. The semantics of a core subset of MacroML is given by an interpretation into MetaML, a statically-typed multi-stage programming language. It is then easy to show that MacroML is stage- and type-safe: macro expansion does not depend on runtime evaluation, and both stages do not "go wrong.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.