Abstract

A transport phenomena-based numerical model is developed to predict the keyhole geometry and temperature profiles in the weldment during laser welding. The model can be used to prevent macroporosity formation during laser welding of aluminum alloys. The experimental results show that the weld metal contains large pores when the welding mode changes from conduction to keyhole mode or vice versa due to changes in welding variables. Based on this observation, the mathematical model predicts macroporosity formation when welding is conducted under conditions where small changes in welding parameters lead to a change in the welding mode. The model has been used to predict the geometry of the keyhole and the fusion zone, and the weldment temperature field for laser beam welding of aluminum alloys 5182 and 5754. The calculated weld pool depth, width, and shape for different welding speeds agreed well with the experimental results. The calculations showed that the keyhole profiles for high-speed welding were asymmetric. Negative beam defocusing resulted in a deeper keyhole than that obtained with positive beam defocusing. The transition from keyhole to conduction mode was more abrupt for negative beam defocusing. The model could predict the formation of macroporosity during laser welding of aluminum alloys 5182 and 5754. The results provide hope that transport phenomena-based models can be useful to prevent the formation of macroporosity during keyhole mode laser welding of aluminum alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.