Abstract
Abstract Using two types of thermotropic liquid-crystal polymers, experimental results reconfirmed previous reports that the relaxation time of extruded liquid-crystal polymers is much longer than that of conventional polymers. The initial modulus and elongation of sheets extruded with liquidcrystal polymers were found to be strongly dependent on the gauge length. In addition, it was observed, for the first time, that the mechanical properties of the extruded thermotropic copolyesters follow the general equations for fiber-reinforced composites such that the angular dependence of the tensile strength of the extruded liquid-crystal polymeric sheets obeys the Tsai-Hill theory, while the angular dependence of the initial modulus follows the Lees equation. These results suggest that the highly oriented liquid-crystal domains may be considered as reinforcing fibers in the extruded articles, and their mechanical properties can be predicted using existing composite theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.