Abstract
Distribution of total creatine (free creatine + phosphocreatine) between two subcellular macrocompartments--mitochondrial matrix space and cytoplasm--in heart and skeletal muscle cells was reinvestigated by using a permeabilized cell technique. Isolated cardiomyocytes were treated with saponin (50 microg/ml for 30 min or 600 microg/ml for 1 min) to open the outer cellular membrane and release the metabolites from cytoplasm (cytoplasmic fraction, CF). All mitochondrial population in permeabilized cells remained intact: the outer membrane was impermeable for exogenous cytochrome c, the acceptor control index of respiration exceeded 10, the mitochondrial creatine kinase reaction was fully coupled to the adenine nucleotide translocator. Metabolites were released from mitochondrial fraction (MF) by 2-5% Triton X100. Total cellular pool of free creatine + phosphocreatine (69.6 +/- 2.1 nmoles per mg of protein) was found exclusively in CF and was practically absent in MF. When fibers were prepared from perfused rat hearts, cellular distribution of creatine was not dependent on functional state of the heart and only slightly modified by ischemia. It is concluded that there is no stable pool of creatine or phosphocreatine in the mitochondrial matrix in the intact muscle cells, and the total creatine pool is localized in only one macrocompartment--cytoplasm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.