Abstract
Human mineral malnutrition or hidden hunger is considered a global challenge, affecting a large proportion of the world’s population. The reduction in the mineral content of edible plant products is frequently found in cultivars bred for higher yields, and is probably increased by intensive agricultural practices. The filling of grain with macro and micronutrients is partly the result of a direct allocation from root uptake and remobilization from vegetative tissues. The aim of this bibliographic review is to focus on recent knowledge obtained from ionomic analysis of plant tissues in order to build a global appraisal of the potential remobilization of all macro and micronutrients, and especially those from leaves. Nitrogen is always remobilized from leaves of all plant species, although with different efficiencies, while nutrients such as K, S, P, Mg, Cu, Mo, Fe and Zn can be mobilized to a certain extent when plants are facing deficiencies. On the opposite, there is few evidence for leaf mobilization of Ca, Mn, Ni and B. Mechanisms related to the remobilization process (remobilization of mineral forms from vacuolar and organic compounds associated with senescence, respectively) are also discussed in the context of drought, an abiotic stress that is thought to increase and known to modulate the ionic composition of grain in crops.
Highlights
Mineral malnutrition is considered to be the most serious global challenge to humankind with over 60, 30, 30 and 15% of the world population being Fe, Zn, I or Se deficient, respectively
Fe content was recycled to the seeds [63] and in Lotus japonicus, a nodule-specific NA synthase has been identified [64]. These results suggest that nodules could contribute to the mobilization of micronutrients to the seeds [65]
Correlations between K and Ca concentrations were positive under optimal water conditions, and negative under drought. These results suggest that drought, while affecting root nutrient uptake may modify cross talk between micronutrients and modify the composition of the leaf with potential consequences for seed composition
Summary
Mineral malnutrition is considered to be the most serious global challenge to humankind with over 60, 30, 30 and 15% of the world population being Fe, Zn, I or Se deficient, respectively. The study by Fan et al [9] shows that breeding wheat for a better yield could be achieved via enhanced photosynthesis combined with an ample supply of macro-nutrients (N, P, K), but this led to a negative selection for micronutrient content in seeds These authors analysed mineral concentrations of archived wheat grains and soil samples between 1843 and 2008 in relation to cultivar, yield and harvest index, and reported that the seed micronutrient contents remained stable between 1843 and the mid 1960s but decreased significantly after that time. A meta-analysis of the literature that considered the effect of increased atmospheric CO2 on the plant ionome [10] indicated in the majority of cases that leaf and seed N content and most of their mineral nutrients (P, K, Ca, S, Mg, Fe, Zn, Cu, Mn) were negatively impacted as the seed carbon concentration increased This empirically robust relationship was systemic i.e., independent of plant species, cropping areas and experimental designs, including Free-air CO2 enrichment (FACE) experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.