Abstract

The current deep learning based machinery fault diagnosis models still face challenges in effectively capturing rich multi-scale feature information and dynamically compensating training loss when dealing with imbalanced dataset. This paper presents a novel approach for machinery fault diagnosis using multi-scale feature focused network and adaptive cost-sensitive loss. Firstly, a multi-scale feature focused network is constructed with improved multi-scale CNN and point-wise attention mechanism module, in which the former can synthetically fuse the features at different scales to expand the coverage of the equivalent receptive field, and the latter can further refine fine-grained features and filter out irrelevant feature interference. Then, an adaptive cost-sensitive loss function is designed to adjust the cost matrix in the training process, dynamically assigning more loss weights for small samples that are difficult to distinguish. The experimental results of planetary gearbox fault diagnosis demonstrate that the proposed approach exhibits superior diagnostic performance compared to other existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.