Abstract

AbstractSkin cancer is the most frequently occurring kind of cancer, accounting for about one-third of all cases. Automatic early detection without expert intervention for a visual inspection would be of great help for society. The image processing and machine learning methods have significantly contributed to medical and biomedical research, resulting in fast and exact inspection in different problems. One of such problems is accurate cancer detection and classification. In this study, we introduce an expert system based on image processing and machine learning for skin cancer detection and classification. The proposed approach consists of three significant steps: pre-processing, feature extraction, and classification. The pre-processing step uses the grayscale conversion, Gaussian filter, segmentation, and morphological operation to represent skin lesion images better. We employ two feature extractors, i.e., the ABCD scoring method (asymmetry, border, color, diameter) and gray level co-occurrence matrix (GLCM), to extract cancer-affected areas. Finally, five different machine learning classifiers such as logistic regression (LR), decision tree (DT), k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF) used to detect and classify skin cancer. Experimental results show that random forest exceeds all other classifiers achieving an accuracy of 97.62% and 0.97 Area Under Curve (AUC), which is state-of-the-art on the experimented open-source dataset PH2.KeywordsSkin cancerABCD rulesGLCMMorphological operationsImage processingMachine learning

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.