Abstract
A belt conveyor system is one of the essential equipment in coal mining. The damages to conveyor belts are hazardous because they would affect the stable operation of a belt conveyor system whilst impairing the coal mining efficiency. To address these problems, a novel conveyor belt damage detection method based on CenterNet is proposed in this paper. The fusion of feature-wise and response-wise knowledge distillation is proposed, which balances the performance and size of the proposed deep neural network. The Fused Channel-Spatial Attention is proposed to compress the latent feature maps efficiently, and the Kullback-Leibler divergence is introduced to minimize the distribution distance between student and teacher networks. Experimental results show that the proposed lightweight object detection model reaches 92.53% mAP and 65.8 FPS. The proposed belt damage detection system can detect conveyor belt damages efficiently and accurately, which indicates its high potential to deploy on end devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.