Abstract

This study is focusing on leveraging the system design tools set for next-generation solid oxide fuel cell (SOFC) based natural gas fuel cell (NGFC) system. Conventionally, system design and optimization of NGFC systems rely heavily on traditional reduced order model (ROM) techniques and designers’ experience level. For overcoming the technical barriers of system design, multiple multi-physics models and machine learning (ML) tools have been utilized to automate the conceptual design process and enhance the reliability of solutions for the NGFC system. The proposed tools set includes a physics-informed ML tool for automated ROM construction that leverages advances in deep neural networks to significantly reduce ROM prediction error for the NGFC power island compared to traditional approaches. The constructed physics-informed ML ROM can be used in system design and optimization tools set Institute for the Design of Advanced Energy Systems (IDAES) Process Systems Engineering (PSE) framework. The tools set also provides user-friendly graphic user interface built within Jupyter Notebooks, and the whole tools set is open-source public available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.