Abstract
Heritability in the immune tumor microenvironment (iTME) has been widely observed yet remains largely uncharacterized. Here, we developed a machine learning approach to map iTME modifiers within loci from genome-wide association studies (GWASs) for breast cancer (BrCa) incidence. A random forest model was trained on a positive set of immune-oncology (I-O) targets, and then used to assign I-O target probability scores to 1,362 candidate genes in linkage disequilibrium with 155 BrCa GWAS loci. Cluster analysis of the most probable candidates revealed two subfamilies of genes related to effector functions and adaptive immune responses, suggesting that iTME modifiers impact multiple aspects of anticancer immunity. Two of the top ranking BrCa candidates, LSP1 and TLR1, were orthogonally validated as iTME modifiers using BrCa patient biopsies and comparative mapping studies, respectively. Collectively, these data demonstrate a robust and flexible framework for functionally fine-mapping GWAS risk loci to identify translatable therapeutic targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.