Abstract

BackgroundTo develop and validate classifier models that could be used to identify patients with a high percentage of potentially recruitable lung from readily available clinical data and from single CT scan quantitative analysis at intensive care unit admission. 221 retrospectively enrolled mechanically ventilated, sedated and paralyzed patients with acute respiratory distress syndrome (ARDS) underwent a PEEP trial at 5 and 15 cmH2O of PEEP and two lung CT scans performed at 5 and 45 cmH2O of airway pressure. Lung recruitability was defined at first as percent change in not aerated tissue between 5 and 45 cmH2O (radiologically defined; recruiters: Δ45-5non-aerated tissue > 15%) and secondly as change in PaO2 between 5 and 15 cmH2O (gas exchange-defined; recruiters: Δ15-5PaO2 > 24 mmHg). Four machine learning (ML) algorithms were evaluated as classifiers of radiologically defined and gas exchange-defined lung recruiters using different models including different variables, separately or combined, of lung mechanics, gas exchange and CT data.ResultsML algorithms based on CT scan data at 5 cmH2O classified radiologically defined lung recruiters with similar AUC as ML based on the combination of lung mechanics, gas exchange and CT data. ML algorithm based on CT scan data classified gas exchange-defined lung recruiters with the highest AUC.ConclusionsML based on a single CT data at 5 cmH2O represented an easy-to-apply tool to classify ARDS patients in recruiters and non-recruiters according to both radiologically defined and gas exchange-defined lung recruitment within the first 48 h from the start of mechanical ventilation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.