Abstract

Obesity is associated with changes in the plasma lipids. Although simple lipid quantification is routinely used, plasma lipids are rarely investigated at the level of individual molecules. We aimed at predicting different measures of obesity based on the plasma lipidome in a large population cohort using advanced machine learning modeling. A total of 1,061 participants of the FINRISK 2012 population cohort were randomly chosen, and the levels of 183 plasma lipid species were measured in a novel mass spectrometric shotgun approach. Multiple machine intelligence models were trained to predict obesity estimates, i.e., body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and body fat percentage (BFP), and validated in 250 randomly chosen participants of the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC). Comparison of the different models revealed that the lipidome predicted BFP the best (R2 = 0.73), based on a Lasso model. In this model, the strongest positive and the strongest negative predictor were sphingomyelin molecules, which differ by only 1 double bond, implying the involvement of an unknown desaturase in obesity-related aberrations of lipid metabolism. Moreover, we used this regression to probe the clinically relevant information contained in the plasma lipidome and found that the plasma lipidome also contains information about body fat distribution, because WHR (R2 = 0.65) was predicted more accurately than BMI (R2 = 0.47). These modeling results required full resolution of the lipidome to lipid species level, and the predicting set of biomarkers had to be sufficiently large. The power of the lipidomics association was demonstrated by the finding that the addition of routine clinical laboratory variables, e.g., high-density lipoprotein (HDL)- or low-density lipoprotein (LDL)- cholesterol did not improve the model further. Correlation analyses of the individual lipid species, controlled for age and separated by sex, underscores the multiparametric and lipid species-specific nature of the correlation with the BFP. Lipidomic measurements in combination with machine intelligence modeling contain rich information about body fat amount and distribution beyond traditional clinical assays.

Highlights

  • Obesity, the abnormal or excessive fat accumulation that may impair health [1], is associated with increased morbidity and mortality from diseases such as type 2 diabetes and cardiovascular disease [2, 3]

  • We identified a complex lipidomic signature for body fat percentage (BFP) and validated the model with an independent data set of the Malmo Diet and Cancer Cardiovascular Cohort (MDC-CC) comprising randomly selected 250 plasma lipidomes [24, 25] measured on the same platform [18]

  • Low biological variation was found in lipid classes such as cholesterol (26%) and sphingomyelin (SM, median of 26%), whereas high variation was seen in dietary lipids like triacylglyceride (TAG) and diacylglyceride (DAG) species and for phosphatidylethanolamine (PE) species

Read more

Summary

Introduction

The abnormal or excessive fat accumulation that may impair health [1], is associated with increased morbidity and mortality from diseases such as type 2 diabetes and cardiovascular disease [2, 3]. Obesity can be estimated in a variety of ways: Most commonly, the body mass index (BMI), a ratio of body weight-for-height [4], is used as an indicator of general adiposity. It is convenient and simple but results in varying cardiovascular and metabolic manifestations across individuals. Larger WHR indicates more intra-abdominal fat and is associated with higher risk for type 2 diabetes, cardiovascular disease, and mortality [6]. Body fat percentage (BFP) is a measure of proportion of adipose tissue in the body compared with lean mass and water [8] and is mostly determined using bioelectrical impedance in field methods. BFP is associated with increased all-cause mortality independently of BMI and is often suggested to be a better estimation of adiposity than BMI for prognostic and exploratory purposes [10]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.