Abstract

In this paper, a database of biomass production from Yarrowia lipolytica fermentation is prepared and constructed using machine learning and data mining approaches. The database is curated from 15 publications and consists of 301 rows of data with 25 predictors and 1 label. The predictors include inoculum size, temperature, pH, and time, while the label is the corresponding biomass production. The database is then divided into training, validation, and test datasets and analyzed as a supervised machine learning task for regression. Twenty-six regression models are employed and compared for their performance in predicting biomass production. The best-performing model is the Matern 5/2 Gaussian process regression model, which has the lowest root-mean-squared error of 0.75 g/L, the highest R squared of 0.90, and the lowest mean absolute error of 0.52 g/L. The t-test is used to identify the most important predictors, and 14 predictors are sufficient for creating an accurate model. These 14 predictors are fermentation time, peptone, temperature, total Kjeldahl nitrogen, shaking rate, total nitrogen, inoculum size, yeast extract, crude glycerol, glucose, oil and grease, media pH, ammonium sulfate, and olive oil. This research demonstrates the application of machine learning and data mining to estimate biomass production and gives insight into which parameters are essential for Yarrowia lipolytica fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.