Abstract

Recent growth in crop genomic and trait data have opened opportunities for the application of novel approaches to accelerate crop improvement. Machine learning and deep learning are at the forefront of prediction-based data analysis. However, few approaches for genotype to phenotype prediction compare machine learning with deep learning and further interpret the models that support the predictions. This study uses genome wide molecular markers and traits across 1110 soybean individuals to develop accurate prediction models. For 13/14 sets of predictions, XGBoost or random forest outperformed deep learning models in prediction performance. Top ranked SNPs by F-score were identified from XGBoost, and with further investigation found overlap with significantly associated loci identified from GWAS and previous literature. Feature importance rankings were used to reduce marker input by up to 90%, and subsequent models maintained or improved their prediction performance. These findings support interpretable machine learning as an approach for genomic based prediction of traits in soybean and other crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.