Abstract

BackgroundMachine learning (ML) offers vigorous statistical and probabilistic techniques that can successfully predict certain clinical conditions using large volumes of data. A review of ML and big data research analytics in maternal depression is pertinent and timely, given the rapid technological developments in recent years.ObjectiveThis study aims to synthesize the literature on ML and big data analytics for maternal mental health, particularly the prediction of postpartum depression (PPD).MethodsWe used a scoping review methodology using the Arksey and O’Malley framework to rapidly map research activity in ML for predicting PPD. Two independent researchers searched PsycINFO, PubMed, IEEE Xplore, and the ACM Digital Library in September 2020 to identify relevant publications in the past 12 years. Data were extracted from the articles’ ML model, data type, and study results.ResultsA total of 14 studies were identified. All studies reported the use of supervised learning techniques to predict PPD. Support vector machine and random forest were the most commonly used algorithms in addition to Naive Bayes, regression, artificial neural network, decision trees, and XGBoost (Extreme Gradient Boosting). There was considerable heterogeneity in the best-performing ML algorithm across the selected studies. The area under the receiver operating characteristic curve values reported for different algorithms were support vector machine (range 0.78-0.86), random forest method (0.88), XGBoost (0.80), and logistic regression (0.93).ConclusionsML algorithms can analyze larger data sets and perform more advanced computations, which can significantly improve the detection of PPD at an early stage. Further clinical research collaborations are required to fine-tune ML algorithms for prediction and treatment. ML might become part of evidence-based practice in addition to clinical knowledge and existing research evidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.