Abstract

The thermal conductivity coefficient of epoxy composites for aircraft, which are reinforced with glass fiber and filled with aerosil, γ-aminopropylaerosil, aluminum oxide, chromium oxide, respectively, was simulated. To this end, various machine learning methods were used, in particular, neural networks and boosted trees. The results obtained were found to be in good agreement with the experimental data. In particular, the correlation coefficient in the test sample was 0.99%. The prediction error of neural networks in the test samples was 0.5; 0.3; 0.2%, while that of boosted trees was 1.5; 0.9%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.