Abstract

Machine learning (ML) encompasses statistical methods that learn to identify patterns in complex datasets. Here, I review application areas in plant-pathogen interactions that have recently benefited from ML, such as disease monitoring, the discovery of gene regulatory networks, genomic selection for disease resistance and prediction of pathogen effectors. However, achieving robust performance from ML is not trivial and requires knowledge of both the methodology and the biology. I discuss common pitfalls and challenges in using ML approaches. Finally, I highlight future opportunities for ML as a tool for dissecting plant-pathogen interactions using high-throughput data, for example, through integration of diverse data sources and the analysis with higher resolution, such as from individual cells or on elaborate spatial and temporal scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.