Abstract

Contrast enhancement algorithms have been evolved through last decades to meet the requirement of its objectives. Actually, there are two main objectives while enhancing the contrast of an image: (i) improve its appearance for visual interpretation and (ii) facilitate/increase the performance of subsequent tasks (e.g., image analysis, object detection, and image segmentation). Most of the contrast enhancement techniques are based on histogram modifications, which can be performed globally or locally. The Contrast Limited Adaptive Histogram Equalization (CLAHE) is a method which can overcome the limitations of global approaches by performing local contrast enhancement. However, this method relies on two essential hyperparameters: the number of tiles and the clip limit. An improper hyperparameter selection may heavily decrease the image quality toward its degradation. Considering the lack of methods to efficiently determine these hyperparameters, this article presents a learning-based hyperparameter selection method for the CLAHE technique. The proposed supervised method was built and evaluated using contrast distortions from well-known image quality assessment datasets. Also, we introduce a more challenging dataset containing over 6200 images with a large range of contrast and intensity variations. The results show the efficiency of the proposed approach in predicting CLAHE hyperparameters with up to 0.014 RMSE and 0.935 R2 values. Also, our method overcomes both experimented baselines by enhancing image contrast while keeping its natural aspect.

Highlights

  • Image enhancement consists of image quality improvement processes, allowing a better visual and computational analysis [1]

  • We present the results regarding the predictive performance of models from different machine learning (ML) algorithms

  • Afterwards, based on the best model performance, some results are discussed in the image enhancement context

Read more

Summary

Introduction

Image enhancement consists of image quality improvement processes, allowing a better visual and computational analysis [1]. Besides providing a better visual interpretation by improving the image appearance, the contrast enhancement may be used to improve the performance of succeeding tasks, such as image analysis, object detection, and image segmentation [2, 4, 5]. It has contributed in a variety of fields like medical image analysis, highdefinition television (HDTV), industrial X-ray imaging, microscopic imaging, and remote sensing [6]

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.