Abstract

Technoeconomic analysis and life-cycle assessment are critical to guiding and prioritizing bench-scale experiments and to evaluating economic and environmental performance of biofuel or biochemical production processes at scale. Traditionally, commercial process simulation tools have been used to develop detailed models for these purposes. However, developing and running such models can be costly and computationally intensive, which limits the degree to which they can be shared and reproduced in the broader research community. This study evaluates the potential of an automated machine learning approach to develop surrogate models based on conventional process simulation models. The analysis focuses on several high-value biofuels and bioproducts for which pathways of production from biomass feedstocks have been well-established. The results demonstrate that surrogate models can be an accurate and effective tool for approximating the cost, mass and energy balance outputs of more complex process simulations at a fraction of the computational expense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.