Abstract

AbstractA method is presented for optimal placement of braces of plane frames using machine learning. The frame is subjected to static horizontal loads representing seismic loads. We consider the process of seismic retrofit by attaching braces. Therefore, the maximum value of additional stresses in the existing beams and columns and the maximum interstory drift angle are incorporated in the optimization problem. Characteristics of approximate optimal solutions and nonoptimal solutions are extracted using machine learning based on support vector machine and binary decision tree. Convolution and pooling are used for defining the features characterizing the solutions while reducing the number of variables. Optimization is carried out using a heuristic algorithm called simulated annealing based on local search. It is shown in the numerical examples that the computational cost is successfully reduced by avoiding costly structural analysis for a solution judged by machine learning as nonoptimal, and the important features in approximate optimal and nonoptimal solutions are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.