Abstract

Evolution prediction is a long-standing goal in evolutionary biology, with potential impacts on strategic pathogen control, genome engineering, and synthetic biology. While laboratory evolution studies have shown the predictability of short-term and sequence-level evolution, that of long-term and system-level evolution has not been systematically examined. Here, we show that the gene content evolution of metabolic systems is generally predictable by applying ancestral gene content reconstruction and machine learning techniques to ~3000 bacterial genomes. Our framework, Evodictor, successfully predicted gene gain and loss evolution at the branches of the reference phylogenetic tree, suggesting that evolutionary pressures and constraints on metabolic systems are universally shared. Investigation of pathway architectures and meta-analysis of metagenomic datasets confirmed that these evolutionary patterns have physiological and ecological bases as functional dependencies among metabolic reactions and bacterial habitat changes. Last, pan-genomic analysis of intraspecies gene content variations proved that even "ongoing" evolution in extant bacterial species is predictable in our framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.