Abstract

ObjectiveAccurate assessment of Fuhrman grade is crucial for optimal clinical management and personalized treatment strategies in patients with clear cell renal cell carcinoma (CCRCC). In this study, we developed a predictive model using ultrasound (US) images to accurately predict the Fuhrman grade. MethodsBetween March 2013 and July 2023, a retrospective analysis was conducted on the US imaging and clinical data of 235 patients with pathologically confirmed CCRCC, including 67 with Fuhrman grades Ⅲ and Ⅳ. This study included 201 patients from Hospital A who were divided into training set (n = 161) and an internal validation set (n = 40) in an 8:2 ratio. Additionally, 34 patients from Hospital B were included for external validation. US images were delineated using ITK software, and radiomics features were extracted using PyRadiomics software. Subsequently, separate models for clinical factors, radiomics features, and their combinations were constructed. The model's performance was assessed by calculating the area under the receiver operating characteristic curve (AUC), calibration curve and decision curve analysis (DCA). ResultsIn total, 235 patients diagnosed with CCRCC, comprising 168 low-grade and 67 high-grade tumors, were included in this study. A comparison of the predictive performances of different models revealed that the logistic regression model exhibited relatively good stability and robustness. The AUC of the combined model for the training, internal validation and external validation sets were 0.871, 0.785 and 0.826, respectively, which were higher than those of the clinical and imaging histology models. Furthermore, the calibration curve demonstrated excellent concordance between the predicted Fuhrman grade probability of CCRCC using the combined model and the observed values in both the training and validation sets. Additionally, within the threshold range of 0–0.93, the combined model demonstrated substantial clinical utility, as evidenced by DCA. ConclusionThe application of US radiomics techniques enabled objective prediction of Fuhrman grading in patients with CCRCC. Nevertheless, certain clinical indicators remain indispensable, underscoring the pressing need for their integrated use in clinical practice. Advances in knowledgePrevious studies have predominantly focused on using computed tomography or magnetic resonance imaging modalities to predict the Fuhrman grade of CCRCC. Our findings demonstrate that a prediction model based on US images is more cost-effective, easily accessible and exhibits commendable performance. Consequently, this study offers a promising approach to maximizing the use of US examinations in future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.