Abstract

A novel numerical method, based on a machine learning approach, is used to solve an inverse problem involving the Dirichlet eigenfrequencies for the elasticity operator in a bounded domain filled with a composite material. The inhomogeneity of the material under study is characterized by a vector which is designed to control the constituent mixture of homogeneous elastic materials that compose it. Using the finite element method, we create a training set for a forward artificial neural network, solving the forward problem. A forward nonlinear map of the Dirichlet eigenfrequencies as a function of the vector design parameter is then obtained. This forward relationship is inverted and used to obtain a training set for an inverse radial basis neural network, solving the aforementioned inverse problem. A numerical example showing the applicability of this methodology is presented.KeywordsMachine learningComposite materialsInverse problemsEigenfrequencies of the elasticity operatorFinite element method

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.