Abstract
Cardiotoxicity, which leads to irreversible myocardial damage, is a major adverse effect associated with chemotherapy. Electrocardiogram (ECG) is an inexpensive, rapid, and simple tool that may provide valuable diagnostic information pertinent to cardiotoxicity. An automatic interpretation and classification of the ECG signals by machine learning algorithms is considered superior to human interpretation of the ECG which may not be able to early detect subtle alterations in the ECG and vary according to the experience of the specialist. The present work aimed at using different machine learning algorithms to classify ECG signals recorded from doxorubicin-injected rats. Rats were divided into four groups and each group was intraperitoneally injected with different cumulative doses of doxorubicin (0, 6, 12, and 18 mg/kg). ECG signal classification depended on multiple features that were extracted from the recorded signals under different conditions. K nearest-neighbors’ algorithm achieved higher classification accuracy (99.83%) than random forest (99.56%), decision tree (99.54%), artificial neural network (99.50%), and support vector machine (99.38%). Furthermore, the dose-dependent cardiotoxicity was validated via a histopathological examination of the left ventricle that indicated significant pathological alterations in the cardiac tissue. The present findings emphasized the potential of the machine learning-based enhanced detection of cardiotoxicity and validated the dose-dependent toxicity of doxorubicin in the cardiac left ventricle. This approach might be applicable clinically to avoid cardiotoxicity in chemotherapy-treated patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.