Abstract

<p>Filtering is an uncertainty quantification technique that refers to the inference of the states of dynamical systems from noisy observations. This work proposes a machine learning-based filtering method for tracking the high-dimensional non-Gaussian state-space models with non-linear dynamics and sparse observations. Our filter method is based on the conditional expectation mean filter and uses machine-learning techniques to approximate the conditional mean (CM). The contribution of this work is twofolds: (i) we demonstrate theoretically that the assimilated ensembles obtained using the ensemble conditional mean filter (EnCMF) provide a correct prediction of the posterior mean and have the optimal variance, and (ii) we implement the EnCMF using artificial neural networks, which has a significant advantage in representing non-linear functions that map between high-dimensionality domains, such as the CM. We implement the machine learning-based EnCMF for tracking the states of the Lorenz-63 and 96 systems under the chaotic regime. Numerical results show that the EnCMF outperforms the ensemble Kalman filter.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.