Abstract
COVID-19 is a disease caused by the SARS-CoV-2 virus that emerged in December 2019 in Wuhan, China. This virus, which can be transmitted quickly, spread worldwide quickly, causing many people to be infected and even killed. The rapid course of the epidemic made managing medical resources difficult. Intensive care units play an important role in saving the lives of severely ill COVID-19 patients. In this study, a machine learning-based detection system was developed to predict the hospitalization of COVID-19 patients in intensive care units. Using a dataset of demographic characteristics and clinical findings of COVID-19 patients, DT, kNN, LR, MLP, NB, RF, and SVM were compared in practice using accuracy, recall, precision, and F-score. Experimental results showed that SVM has 0.964 accuracy, 0.957 precision, 0.971 recall, and 0.963 F-score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: NATURENGS MTU Journal of Engineering and Natural Sciences Malatya Turgut Ozal University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.