Abstract

Pretest probability (PTP) for assessing obstructive coronary artery disease (ObCAD) was updated to reduce overestimation. However, standard laboratory findings and electrocardiogram (ECG) raw data as first-line tests have not been evaluated for integration into the PTP estimation. Therefore, this study developed an ensemble model by adopting machine learning (ML) and deep learning (DL) algorithms with clinical, laboratory, and ECG data for the assessment of ObCAD. Data were extracted from the electronic medical records of patients with suspected ObCAD who underwent coronary angiography. With the ML algorithm, 27 clinical and laboratory data were included to identify ObCAD, whereas ECG waveform data were utilized with the DL algorithm. The ensemble method combined the clinical-laboratory and ECG models. We included 7907 patients between 2008 and 2020. The clinical and laboratory model showed an area under the curve (AUC) of 0.747; the ECG model had an AUC of 0.685. The ensemble model demonstrated the highest AUC of 0.767. The sensitivity, specificity, and F1 score of the ensemble model ObCAD were 0.761, 0.625, and 0.696, respectively. It demonstrated good performance and superior prediction over traditional PTP models. This may facilitate personalized decisions for ObCAD assessment and reduce PTP overestimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.