Abstract

Similar to its classical version, quantum Markovian evolution can be either time-discrete or time-continuous. Discrete quantum Markovian evolution is usually modeled with completely positive trace-preserving maps, while time-continuous evolution is often specified with superoperators referred to as "Lindbladians." Here, we address the following question: Being given a quantum map, can we find a Lindbladian that generates an evolution identical-when monitored at discrete instances of time-to the one induced by the map? It was demonstrated that the problem of getting the answer to this question can be reduced to an NP-complete (in the dimension N of the Hilbert space, the evolution takes place in) problem. We approach this question from a different perspective by considering a variety of machine learning (ML) methods and trying to estimate their potential ability to give the correct answer. Complimentarily, we use the performance of different ML methods as a tool to validate a hypothesis that the answer to the question is encoded in spectral properties of the so-called Choi matrix, which can be constructed from the given quantum map. As a test bed, we use two single-qubit models for which the answer can be obtained using the reduction procedure. The outcome of our experiment is that, for a given map, the property of being generated by a time-independent Lindbladian is encoded both in the eigenvalues and the eigenstates of the corresponding Choi matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.