Abstract

BackgroundThere is a lack of reliable biomarkers for major depressive disorder (MDD) in clinical practice. However, several studies have shown an association between alterations in microRNA levels and MDD, albeit none of them has taken advantage of machine learning (ML).MethodSupervised and unsupervised ML were applied to blood microRNA expression profiles from a MDD case-control dataset (n = 168) to distinguish between (1) case vs control status, (2) MDD severity levels defined based on the Montgomery-Asberg Depression Rating Scale, and (3) antidepressant responders vs nonresponders.ResultsMDD cases were distinguishable from healthy controls with an area-under-the receiver-operating characteristic curve (AUC) of 0.97 on testing data. High- vs low-severity cases were distinguishable with an AUC of 0.63. Unsupervised clustering of patients, before supervised ML analysis of each cluster for MDD severity, improved the performance of the classifiers (AUC of 0.70 for cluster 1 and 0.76 for cluster 2). Antidepressant responders could not be successfully separated from nonresponders, even after patient stratification by unsupervised clustering. However, permutation testing of the top microRNA, identified by the ML model trained to distinguish responders vs nonresponders in each of the 2 clusters, showed an association with antidepressant response. Each of these microRNA markers was only significant when comparing responders vs nonresponders of the corresponding cluster, but not using the heterogeneous unclustered patient set.ConclusionsSupervised and unsupervised ML analysis of microRNA may lead to robust biomarkers for monitoring clinical evolution and for more timely assessment of treatment in MDD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.