Abstract

This paper presents a machine-learning-based speed-up strategy for real-time implementation of model-predictive-control (MPC) in emergency voltage stabilization of power systems. Despite success in various applications, real-time implementation of MPC in power systems has not been successful due to the online control computation time required for large-sized complex systems, and in power systems, the computation time exceeds the available decision time used in practice by a large extent. This long-standing problem is addressed here by developing a novel MPC-based framework that i) computes an optimal strategy for nominal loads in an offline setting and adapts it for real-time scenarios by successive online control corrections at each control instant utilizing the latest measurements, and ii) employs a machine-learning based approach for the prediction of voltage trajectory and its sensitivity to control inputs, thereby accelerating the overall control computation by multiple times. Additionally, a realistic control coordination scheme among static var compensators (SVC), load-shedding (LS), and load tap-changers (LTC) is presented that incorporates the practical delayed actions of the LTCs. The performance of the proposed scheme is validated for IEEE 9-bus and 39-bus systems, with ±20% variations in nominal loading conditions together with contingencies. We show that our proposed methodology speeds up the online computation by 20-fold, bringing it down to a practically feasible value (fraction of a second), making the MPC real-time and feasible for power system control for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.