Abstract

In order to train at high-intensity, athletics can again cause varying degrees of myocardial damage. Evaluating the balance between exercise myocardial injury and exercise intensity should actively prevent myocardial injury caused by high-intensity athletic training. In this paper, an intelligent optimization algorithm is used to investigate the degree of myocardial injury. The basic idea is to define the measured data and the output of the numerical model as an objective function of the structural parameters, to obtain the structural parameters by finding ways to continuously optimize the objective function to be close to the observed values, and to identify the injury based on the changes in these parameters before and after myocardial injury. The objective function can be defined in various ways, and the myocardial injury optimization algorithm can be chosen. In order to obtain the best computational results, numerical simulations of damage identification are performed using the objective function and three machine learning-based optimization algorithms. The computational results show that the combination of the objective function and the machine learning algorithms provides good accuracy and computational speed in identifying myocardial injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.