Abstract

ABSTRACTUnder higher cutting conditions, machining of 17-4 precipitation hardenable stainless steel (PH SS) is a difficult task due to the high cutting temperatures as well as accumulation of chips at the machining zone, which causes tool damage and impairment of machined surface finish. Cryogenic machining is an efficient, eco-friendly manufacturing process. In the current work, cutting temperature, tool wear (flank wear (Vb) and rake wear), chip morphology, and surface integrity (surface topography, surface finish (Ra), white layer thickness (WLT)) were considered as investigative machinability characteristics under the cryogenic (liquid nitrogen), minimum quantity lubrication (MQL), wet and dry environments at varying cutting velocities while machining 17-4 PH SS. The results show that the maximum cutting temperature drop found in cryogenic machining was 72%, 62%, and 61%, respectively, in contrast to dry, wet, and MQL machining conditions. Similarly, the maximum tool wear reduction was found to be 60%, 55%, and 50% in cryogenic machining over the dry, wet, and MQL machining conditions, respectively. Among all the machining environments, better surface integrity was obtained by cryogenic machining, which could produce the functionally superior products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.