Abstract

AbstractThe main objective of the present study is to investigate the machinability of AA 2024‐T351 aluminum alloy by laser beam‐assisted engraving process. The surface in a defined area was machined with the engraving process parameters of scan speed, frequency, and pulse width. While surface roughness measurements were performed to characterize the texture of the processed surface with laser engraving parameters, machining depth measurements were carried out to determine the material removal capacity. In addition, a mathematical relation was built for engraving depth and surface roughness using the response surface methodology. An increase in scan speed and pulse width led to a decrease in engraving depth and surface roughness. Unlike the scan speed and pulse width, any increase in frequency led to increased surface roughness and decreased engraving depth. After processing with lower pulse width and scan speed, a chaotic topography was formed on the surface. The effects of process parameters on engraving depth and surface roughness were analyzed statistically using factorial analysis. Except for the frequency, all parameters for surface roughness were statistically significant, whereas all parameters for engraving depth were statistically significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.