Abstract

ObjectivesMajor adverse cardiac events (MACE) of acute coronary syndrome (ACS) often occur suddenly resulting in high mortality and morbidity. Recently, the rapid development of electronic medical records (EMR) provides the opportunity to utilize the potential of EMR to improve the performance of MACE prediction. In this study, we present a novel data-mining based approach specialized for MACE prediction from a large volume of EMR data. MethodsThe proposed approach presents a new classification algorithm by applying both over-sampling and under-sampling on minority-class and majority-class samples, respectively, and integrating the resampling strategy into a boosting framework so that it can effectively handle imbalance of MACE of ACS patients analogous to domain practice. The method learns a new and stronger MACE prediction model each iteration from a more difficult subset of EMR data with wrongly predicted MACEs of ACS patients by a previous weak model. ResultsWe verify the effectiveness of the proposed approach on a clinical dataset containing 2930 ACS patient samples with 268 feature types. While the imbalanced ratio does not seem extreme (25.7%), MACE prediction targets pose great challenge to traditional methods. As these methods degenerate dramatically with increasing imbalanced ratios, the performance of our approach for predicting MACE remains robust and reaches 0.672 in terms of AUC. On average, the proposed approach improves the performance of MACE prediction by 4.8%, 4.5%, 8.6% and 4.8% over the standard SVM, Adaboost, SMOTE, and the conventional GRACE risk scoring system for MACE prediction, respectively. ConclusionsWe consider that the proposed iterative boosting approach has demonstrated great potential to meet the challenge of MACE prediction for ACS patients using a large volume of EMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.