Abstract
Lysosomal enzymes sialidase (alpha-neuraminidase), beta-galactosidase, and N-acetylaminogalacto-6-sulfate sulfatase are involved in the catabolism of glycolipids, glycoproteins, and oligosaccharides. Their functional activity in the cell depends on their association in a multienzyme complex with lysosomal carboxypeptidase, cathepsin A. We review the data suggesting that the integrity of the complex plays a crucial role at different stages of biogenesis of lysosomal enzymes, including intracellular sorting and proteolytic processing of their precursors. The complex plays a protective role for all components, extending their half-life in the lysosome from several hours to several days; and for sialidase, the association with cathepsin A is also necessary for the expression of enzymatic activity. The disintegration of the complex due to genetic mutations in its components results in their functional deficiency and causes severe metabolic disorders: sialidosis (mutations in sialidase), GM1-gangliosidosis and Morquio disease type B (mutations in beta-galactosidase), galactosialidosis (mutations in cathepsin A), and Morquio disease type A (mutations in N-acetylaminogalacto-6-sulfate sulfatase). The genetic, biochemical, and direct structural studies described here clarify the molecular pathogenic mechanisms of these disorders and suggest new diagnostic tools.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Nucleic Acid Research and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.