Abstract
Lysophosphatidylcholine (LPC) is a bioactive phospholipid that accumulates rapidly in the ischemic myocardium. In recent years, it has been shown that some of the actions of LPC are mediated through the activation of the membrane G proteins. However, the precise mechanism(s) responsible for the LPC-related intracellular signaling in the regulation of cardiac ion channels are still poorly understood. The present study was undertaken to examine whether LPC regulates the slow component of the delayed rectifier K+ current (IKs) and, if so, what intracellular signals are important for this process. Isolated guinea pig cardiac myocytes were voltage-clamped using the whole-cell configuration of the patch-clamp method. The bath application of 1-palmitoyl-lysophosphatidylcholine (LPC-16) concentration-dependently (EC50=0.7μM) and reversibly increased IKs in atrial cells, but failed to potentiate IKs in ventricular myocytes. In contrast, 1-oleoyl-lysophosphatidylcholine (LPC-18:1) only produced a slight IKs increase, and 1-caproyl-lysophosphatidylcholine (LPC-6) or the LPC-16 precursor (phosphatidylcholine) had no effect on IKs. Pretreatment of atrial cells with an antibody against the N-terminus of the G2A receptor significantly reduced the LPC-16-induced potentiation of IKs. The inhibition of heterotrimeric G protein, phospholipase C (PLC) and protein kinase C (PKC) significantly reduced LPC-16-induced enhancement of IKs. Moreover, the blockade of Rho and Rho-kinase by specific inhibitors also inhibited the activity of LPC-16. Immunohistochemical studies demonstrated that G2A was densely distributed in the plasma membrane of atrial myocytes. Therefore, the present study suggests that the activation of a G protein (probably Gαq) by LPC-16 potentiates IKs currents through the PLC–PKC and Rho-kinase pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.