Abstract
The Euclid space mission, designed to probe evolution of the Dark Energy, will map a large area of the sky at three adjacent near-IR filters, Y, J and H. This coverage will also enable mapping source-subtracted cosmic infrared background (CIB) fluctuations with unprecedented accuracy on sub-degree angular scales. Here we propose methodology, using the Lyman-break tomography applied to the Euclid-based CIB maps, to accurately isolate the history of CIB emissions as a function of redshift from 10 < z < 20, and to identify the baryonic acoustic oscillations (BAOs) at those epochs. To identify the BAO signature, we would assemble individual CIB maps over conservatively large contiguous areas of >~ 400 sq deg. The method can isolate the CIB spatial spectrum by z to sub-percent statistical accuracy. We illustrate this with a specific model of CIB production at high z normalized to reproduce the measured Spitzer-based CIB fluctuation. We show that even if the latter contain only a small component from high-z sources, the amplitude of that component can be accurately isolated with the methodology proposed here and the BAO signatures at z>~ 10 are recovered well from the CIB fluctuation spatial spectrum. Probing the BAO at those redshifts will be an important test of the underlying cosmological paradigm, and would narrow the overall uncertainties on the evolution of cosmological parameters, including the Dark Energy. Similar methodology is applicable to the planned WFIRST mission, where we show that a possible fourth near-IR channel at > 2 micron would be beneficial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.