Abstract

This paper presents a Lyapunov-based approach to design the boundary feedback control for an openchannel network composed of a cascade of multi-reach canals, each described by a pair of Saint-Venant equations. The weighted sum of entropies of the multi-reaches is adopted to construct the Lyapunov function. The time derivative of the Lyapunov function is expressed by the water depth variations at the gate boundaries, based on which a class of boundary feedback controllers is presented to guarantee the local asymptotic closed-loop stability. The advantage of this approach is that only the water level depths at the gate boundaries are measured as the feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.