Abstract

In this research, two novel online fault detection algorithms are proposed for sensor faults in aircraft. Radial basis function neural network (RBFNN) is used as a fault detection technique, for weight updating parameters adaptive learning rates are used instead of fixed learning rates, two different adaptive learning rate strategies are proposed based on Lyapunov functions which are compared to Extended Kalman Filter (EKF) algorithm. Boeing 747–100/200 aircraft is used for testing and validation of these algorithms. All algorithms have the ability to detect various types of faults such as simultaneous, intermittent, abrupt and incipient with high preciseness and accuracy occur in aircraft sensors. The capability of sensors fault detection of all algorithms are compared, it is proved that all algorithms have the ability to detect faults but Lyapunov function theory II based algorithm is more efficient and having a fast response in faults detection as compared to Lyapunov function theory I and EKF based algorithms. It is also proved that the Lyapunov function theory II based algorithm is more effective in reducing the computational time and computation load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.