Abstract

In the structure theory of quantized enveloping algebras, the algebra isomorphisms determined by Lusztig led to the first general construction of PBW bases of these algebras. Also, they have important applications to the representation theory of these and related algebras. In the present paper the Drinfel'd double for a class of graded Hopf algebras is investigated. Various quantum algebras, including small quantum groups and multiparameter quantizations of semisimple Lie algebras and of Lie superalgebras, are covered by the given definition. For these Drinfel'd doubles Lusztig maps are defined. It is shown that these maps induce isomorphisms between doubles of bosonizations of Nichols algebras of diagonal type. Further, the obtained isomorphisms satisfy Coxeter type relations in a generalized sense. As an application, the Lusztig isomorphisms are used to give a characterization of Nichols algebras of diagonal type with finite root system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.