Abstract
Lung field segmentation in chest radiographs (CXRs) is an essential preprocessing step in automatically analyzing such images. We present a method for lung field segmentation that is built on a high-quality boundary map detected by an efficient modern boundary detector, namely a structured edge detector (SED). A SED is trained beforehand to detect lung boundaries in CXRs with manually outlined lung fields. Then, an ultrametric contour map (UCM) is transformed from the masked and marked boundary map. Finally, the contours with the highest confidence level in the UCM are extracted as lung contours. Our method is evaluated using the public Japanese Society of Radiological Technology database of scanned films. The average Jaccard index of our method is 95.2%, which is comparable with those of other state-of-the-art methods (95.4%). The computation time of our method is less than 0.1 s for a CXR when executed on an ordinary laptop. Our method is also validated on CXRs acquired with different digital radiography units. The results demonstrate the generalization of the trained SED model and the usefulness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.